Robust Least Square Support Vector Regression for Contaminated Data Modeling
نویسندگان
چکیده
Weighted least squares support vector machine (WLSSVM) is a robust version of least squares support vector machine (LS-SVM). It adds weights on error variables to eliminate the influence of outliers. But the weights, which largely depend on the original regression errors from unweighted LS-SVM, might be unreliable for correcting the biased estimation of LS-SVM, especially for the training data set with large deviation outliers. In this paper, a twostage weighting strategy is proposed. This approach derives from the idea of spatial rank of feature vector, and down-weights these large deviation outliers firstly. Then the weights are updated by these regression errors of WLSSVM with the weights obtained in the first weighting stage. Finally, WLS-SVM is again employed to further improve the prediction performance. The effectiveness of the proposed robust LS-SVM is validated by two artificial data examples and a soft sensor modeling problem.
منابع مشابه
The Application of Least Square Support Vector Machine as a Mathematical Algorithm for Diagnosing Drilling Effectivity in Shaly Formations
The problem of slow drilling in deep shale formations occurs worldwide causing significant expenses to the oil industry. Bit balling which is widely considered as the main cause of poor bit performance in shales, especially deep shales, is being drilled with water-based mud. Therefore, efforts have been made to develop a model to diagnose drilling effectivity. Hence, we arrived at graphical cor...
متن کاملModeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique
Understanding crack growth behavior in engineering components subjected to cyclic fatigue loadings is necessary for design and maintenance purpose. Fatigue crack growth (FCG) rate strongly depends on the applied loading characteristics in a nonlinear manner, and when the mechanical loadings combine with environmental attacks, this dependency will be more complicated. Since, the experimental inv...
متن کاملLeast Squares Support Vector Machine for Constitutive Modeling of Clay
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...
متن کاملSupport vector regression for prediction of gas reservoirs permeability
Reservoir permeability is a critical parameter for characterization of the hydrocarbon reservoirs. In fact, determination of permeability is a crucial task in reserve estimation, production and development. Traditional methods for permeability prediction are well log and core data analysis which are very expensive and time-consuming. Well log data is an alternative approach for prediction of pe...
متن کاملPartial least squares- least squares- support vector machine modeling of ATR-IR as a spectrophotometric method for detection and determination of iron in pharmaceutical formulations
Iron is an essential element used as supplement in different dosage-forms. Different time and expenditure-consuming methods introduced for detection and determination of elemental ions such as atomic absorption. In this research, two different and routine methods containing ATR-IR and atomic absorption were applied to define the amount of iron in 198 samples containing different concentrations ...
متن کامل